NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus

For

Bachelor of Technology Electronics and Communication Engineering (ECE) Fourth Year

(Effective from the Session: 2023-24)

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Electronics and Communication Engineering <u>EVALUATION SCHEME</u> SEMESTER-VII

SI.	Subject Codes	Subject Name	Pe	erio	ds	Ev	aluati	ion Scher	ne	En Seme		Total	Credit
No.	Codes		L	Т	P	СТ	TA	TOTAL	PS	TE	PE		
		WEEKS COMPULSORY	Y IN	DU	JCT	ION I	PROG	GRAM					
1	AEC0701	Optical Communication and Network	3	0	0	30	20	50		100		150	3
2		Departmental Elective-V	3	0	0	30	20	50		100		150	3
3		Open Elective - II	3	0	0	30	20	50		100		150	3
4		Open Elective - III	3	0	0	30	20	50		100		150	3
5	AEC0751	Optical Communication & Networking Lab	0	0	2				25		25	50	1
6	AEC0759	Industrial Assessment-III	0	0	2				50			50	1
7		MOOCs (For B.Tech. Hons. Degree)											
		GRAND TOTAL										700	14

List of MOOCs (Coursera) Based Recommended Courses for Fourth Year (Semester-VII) B. Tech Students

S. No.	Subject Code	Course Name (IoT)	University / Industry Partner Name	No of Hours	Credits
1.	AMC0173	Software Architecture for the IoT	EIT Digital	26 hours	2
2.	AMC0163	Introduction to Architecting smart IoT Devices	EIT Digital	16 hours	1
		<u>OR</u>		1	
S. No.	Subject Code	Course Name (AI)	University / Industry Partner Name	No of Hours	Credits
1	AMC0013	Python for Data Science, AI & Development	IBM	23 hours	1.5
2	AMC0160	Getting Started with Go	University of California, Irvine	10 hours	0.5
	-	<u>OR</u>			
S. No.	Subject Code	Course Name (Embedded & Robotics)	University / Industry Partner Name	No of Hours	Credits
1	AMC0172	Real-Time Project for Embedded Systems	University of Colorado Boulder	48 hours	4
2	2 AMC0160 Getting Started with Go		University of California, Irvine	10 hours	0.5

PLEASE NOTE:-

• Internship (3-4 weeks) shall be conducted during summer break after semester-VI and will be assessed during semester-VII.

Departmental SI. Subject Bucket Subject Name Branch Semester No. Electives Codes Name Big Data Analytics For IoT and AEC0711 Internet of 1. Elective-V ECE 7 Internet of Everything Things Industrial Automation and Embedded& AEC0712 2. Elective-V ECE 7 Programming **Robotics** Artificial AEC0713 3. Elective-V 7 **Data Analytics** ECE Intelligence

List of Departmental Electives- V

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Electronics and Communication Engineering <u>EVALUATION SCHEME</u> SEMESTER-VIII

SI.	Subject	Subject Name	Р	erio	ds	E	valua	tion Schen	ne	En Seme		Total	Credit
No.	Codes	je na je na se	L	Т	P	СТ	ТА	TOTAL	PS	TE	PE	100001	
1		Open Elective - IV	2	0	0	30	20	50		100		150	2
2	AEC0858/ AEC0859	Industrial Internship/ Capstone Project	0	0	20				200		300	500	10
3		MOOCs (For B.Tech. Hons. Degree)			2								
4		TOTAL										650	12

List of MOOCs (Coursera) Based Recommended Courses for Fourth Year (Semester-VIII) B. Tech Students

S. No.	Subject Code	Course Name (IoT)	University / Industry Partner Name	No of Hours	Credits
1.	AMC0185	Ethical Hacking Essentials	EC Council	32 hours	2.5
2.	AMC0155	Cyber security Roles, Processes & Operating System Security	IBM	11 hours	0.5
	1	OR			
S. No.	Subject Code	Course Name (AI)	University / Industry Partner Name	No of Hours	Credits
1	AMC0200	Supervised Machine Learning: Regression	IBM	20 hours	1.5
2	AMC0165	Introduction to Computer Vision and Image Processing	IBM	21 hours	1.5
		<u>OR</u>			
S. No.	Subject Code	Course Name (Embedded & Robotics)	University / Industry Partner Name	No of Hours	Credits
1	AMC0198	RPA Lifecycle: Development and Testing	Automation Anywhere	9 hours	0.5
2	AMC0197	RPA Basics and Introduction to UiPath	UiPath	6 hours	0.5

S.No.	Subject Code	Course Name	University/Industry Partner Name	No. of Hours	Credit
1	AMC0222	Network Fundamentals	Infosys Springboard	37h 57m	3
2	AMC0223	Fundamentals of Routing 101	Infosys Springboard	46h 54m	3.5

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Electronics and Communication Engineering

<u>AICTE Guidelines in Model Curriculum:</u>

A student will be eligible to get Under Graduate degree with Honors only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

1. For 6 to 12 Hours	=0.5 Credit
2. For 13 to18	=1 Credit
3. For 19 to 24	=1.5 Credit
4. For 25 to 30	=2 Credit
5. For 31 to 35	=2.5 Credit
6. For 36 to 41	=3 Credit
7. For 42 to 47	=3.5 Credit
8. For 48 and above	=4 Credit

For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shall provide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only.

The students shall be awarded Honors Degree as per following criterion.

i. If he / she secures 7.50 as above CGPA.

ii. Passed each subject of that degree program in the single attempt without any grace.

iii. Successful completion of MOOCs based 20 credit

	B.TECH FOURTH YEAR							
Course Co	de AEC0701	LTP	Credits					
Course Tit	le Optical Communication and Network	300	3					
Course Ob	jectives: The student will learn about							
1	The basic concepts of optical communication.							
2	The different types of signal losses and dispersion mechanism occurring	g inside t	the optical					
<u> </u>	fiber cable.							
3	The optical sources used in optical communication with their comparative study.							
4	Different multiplexing techniques, second generation optical networks, optical packet switching	optical l	ayer, and					
5	Different types of optical network technologies							
Pre-requisi	es: Analog and Digital Communication							
	Course Contents / Syllabus							
UNIT-I	Introduction to Optical Communication		8 hours					
System wit Optical Fil Skew Rays Velocity, P	ectral Band with Operating Windows, General Communication System, O h its advantages. ber Waveguides: Ray Theory of Transmission with TIR, Acceptance Angle, N , Electromagnetic Mode Theory for Optical Propagation, Modes in a Planar G hase Shift with Total Internal Reflection, Evanescent Field, Goos-Haenchen S de Coupling, Step Index fibers Vs Graded Index fibers, Single Mode Fibers	Numerical buide, Pha Shift, Cyl	Aperture and se and Group indrical Fiber					
MFD & Sp	ot Size.							
UNIT-II	Signal Loss in Optical Fibers		8 hours					
Attenuation	n, Material Absorption Losses (Intrinsic and Extrinsic absorption), types of I	Linear an	d Non-Linear					
Dispersion Dispersion and Singe	Losses, Fiber Bending Losses, Kerr Effect. : Introduction with its types: Chromatic / Intramodal Dispersion (Mat , Intermodal dispersion (for MSI and MGI fibers), Overall (Total) Fiber Dis Mode Fiber, Dispersion Modified Single Mode Fibers, Polarization & Fiber I	persion i	n Multimode ence.					
Characteris Laser Osc	Optical Sources duction to LEDs & Materials used for fabrication, LED Power and Efficiency, tics, Modulation Bandwidth, Laser Diodes and Photo Detector-Introduction illations, Resonant Frequencies, Physical Principles of Photodiodes: The Photodiodes, Temperature Effect on Avalanche Gain, Detector Response Time.	, Optical PIN Pho	Feedback &					
UNIT-IV	Introduction to Optical Network		8 hours					
Optical Net switching. Effects: Eff in a nonline	tworks: multiplexing techniques, second generation optical networks. The optic Transmission Basics: wavelength, frequencies and channel spacing, wavelengt fective length and area, stimulated Brillouin scattering, stimulated Raman ear medium, self-phase modulation, cross phase modulation Four wave mixing.	th standar	optical packet ds. Nonlinear , Propagation					
UNIT-V	Optical Networks Technologies		8 hours					
Elements or Routing an	DH: Multiplexing, SONET/SDH layers, SONET Frame structure, SONE f a SONET/SDH infrastructure. ATM: Function of ATM, Adaptation layers, d forwarding, QOS, WDM Network elements: Optical line terminals, Optical multiplexers: Architecture, reconfigurable OADMS, Optical cross conne on.	, Quality line amp	of service. IP lifiers, Optica					
Course Ou	tcomes: At the end of this course students will demonstrate the abilit	y to						
CO 1	Define and explain the basic concepts of optical communication.		K1, K2					
CO 2	Describe the signal losses and dispersion mechanism occurring inside th optical fiber cable.	e	K1, K2					

CO 3 Compare the optical sources used in optical communication with their K1, K4

	comparative study.		
	Different multiplexing techniques, second generation optical networks, optical layer, and optical packet switching.	K1, K3	
CO 5	Analyze the working of Different types of optical network technologies.	K1, K4	
Text books			
1. 2. John	M. Senior, "Optical Fiber Communications", PEARSON, 3rd		
3. 4. R.R	amaswami, & K. N. Siva rajan, "Optical Networks a Practical perspective", Morg	gan	
Kau	fmann Publishers, 3Ed.		
5. 6. U.B	Black, "Optical Networks: Third Generation Transport Systems"/ Pearson Educati	ons	
Reference l	Books		
1. Bisw	vanath Mukherjee "Optical WDM Networks" Springer Pub 2006.		
2. Gov	ind P. Agrawal, "Fiber Optic Communication Systems", John Wiley, 3rd Edition,	2004.	
NPTEL/ Yo	outube/ Faculty Video Link:		
Unit I	https://www.youtube.com/watch?v=PnBxq0- FisA&list=PLbMVogVj5nJQxs7jmzJkGENCYYL-WnP_F&index=4		
Unit II	https://www.youtube.com/watch? v=BGUhTDWkwx8&list=PLbMVogVj5nJQxs7jmzJkGENCYYL-WnP_F&ind	lex=9	
Unit III	https://www.youtube.com/watch? v=wwdtDcu5yAE&list=PLbMVogVj5nJQxs7jmzJkGENCYYL-WnP_F&index	x=12	
Unit IV	https://www.youtube.com/watch? v=4W7hieXDAmc&list=PLHj96QRJ0kOhH8xoXXrOgkMf9ZOvjhqYl&index	=114	
Unit V https://www.youtube.com/watch? v=f5EmFoXlYyQ&list=PLHj96QRJ0kOhH8xoXXrOgkMf9ZOvjhqYl&index=115			

Course	Code	AEC0751 L T P	Credit	
Course	Title	Optical Communication & Networking Lab 0 0 2	1	
Course	Objectiv	ves: The student will learn	1	
1.	The co	ncept of optical fiber communication and setup of the link.		
2.		ations of Time-Division Multiplexing and Line Coding schemes in optical communication		
3.	The eff	fect of electromagnetic interference on the optical fiber medium.		
4.	The im	plementation of Memory management & I/O management in optical communication.		
Pre-req	uisites:]	Basics of Communication Lab & Networking		
		List of Experiments		
Sr. No.		Name of Experiment	CO	
	Setting Multime	up fiber optic analog link using ST-2502 Fiber Optics Trainer and Digital eter.	CO1	
		a 650nm fiber optic analog link in this experiment and establish the relation between the nal and received signal.	CO1	
	Study an 2502 Fib	d perform time division multiplexing (digital) through optical fiber link with help of ST- er	CO2	
		the characteristics offiber optic LED's and photodetector. d draw I-V Characteristics of Fiber optic LED and Photodetector.	CO2	
		are the effect of Electromagnetic Interference on a copper medium and on an optical fibre and Measurement of bending loss and propagation loss in the fiber.	CO3	
7.	Identify	Cat5 cable, RJ 45 Connector, Crimping Tool, Wire Stripper	CO3	
	Use Wire Cable	e Stripper for Cutting wire shield and Understanding of Internal Structure of Cat 5	CO4	
9.	Finding 1	Pin No-1 on RJ 45 Connector and Inserting Wires in connector	CO4	
	-	of a router & method to access the router via console or using telnet, different types used for connectivity	CO4	
11.	Internet	Information Services tool and its installation	CO4	
12.		ement a simple file transfer protocol (FTP) using connection-oriented and connectionless	CO4	
Course	Outcom	e: After successful completion of this Lab students will be able to	Blooms Level	
CO 1	Perform	Multiplexing in optical fiber communication.	K2,K3	
			K3,K4	
CO 3	Implem		K1,K2, K4	
CO 4	Design		K1,K5, K6	

	B.TECH FOURTH YEAR		
Course Code	AEC0711	L T P	Credits
Course Title	Big Data Analytics for IoT and Internet of Everything	300	3
Course objecti	ve: Student will learn about		
1	The concepts of big data platforms for IoT.		
2	The concepts of Sustainability Data and Analytics.		
3	YARN and HDFS in data management system.		
4	The Hadoop and Map reduce and its uses in features extraction.		
5	The various types of Google and AWS data analytics tools.		
Pre-requisites:			
Basic Knowledg	e of IoT and IoT Protocols		
	Course Contents / Syllabus		1
UNIT-I	Big data platforms for the internet of things rms for the Internet of Things: network protocol, data dissemi		8 hours
Pervasive	operability problem in the IoT context, Big Data Management Sys ig Data challenges and its requirements, Types of data		
UNIT-II	Sustainability Data and Analytics ata and Analytics: Sustainability Data and Analytics in Cloud-Bas		8 hours
New Features –]	Hadoop Architecture stem and YARN: Hadoop ecosystem components, schedulers, fair Name Node high availability, HDFS federation, MRv2, YARN, Ru Distributed File System): Design of HDFS, HDFS concepts, benefi	nning MRv1	in YARN.
block sizes and b Interfaces to HD	Distributed File System): Design of HDFS, HDFS concepts, beneficilock abstraction in HDFS, data replication, how does HDFS store, FS, command-line interface, Hadoop file system interfaces, data foop archives, Hadoop I/O: compression, serialization, Avro and file	read, and wr low, data ing	ite files, Java sest with Flume
UNIT-IV	Hadoop and Map Reduce		8 hours
	r of Hadoop, Apache Hadoop, the Hadoop Distributed File Syste	m. compone	
data format, analyzing Map Reduce: M application, unit scheduling, shuf	g data with Hadoop, scaling out, Hadoop streaming, Hadoop pipes, Iap Reduce framework and basics, how Map Reduce works, tests with MR unit, test data and local tests, anatomy of a Map F fle and sort, task execution, Map Reduce types, input formats, o orld Map Reduce	Hadoop Ech developing Reduce job r	o System. a Map Reduce 11, failures, job
UNIT-V	Google and AWS Data Analytics Tools		8 hours
Google Data An Studio, Google C AWS Data Ana	alytics Tools: Google Analytics, Google Search Console, Looker Optimize, Google Surveys, Google tag manager, Google Big Query lytics Tools: Amazon Athena, Amazon EMR, Amazon Redshift, vice, Amazon Quick sight, AWS Glue Data Brew	C C	s, Google Data
Course Outco	nes: After completion of this course students will be able	to	
CO 1			
	Identify the concept of big data platforms for IoT.		K1,K2

CO 2	lyze the concept of Sustainability Data and Analytics in Cloud-Based M2M Systems.	K2,K3				
CO 3	Explain the YARN and HDFS in Data management. K1,K2					
CO 4	O 4 Analyze Map Reduce framework and demonstrate its use in features K2, K3 extraction.					
CO 5	Describe the various types of Google and AWS data analytics tools.	K1,K2				
Text books						
1. Michael	Minelli, Michelle Chambers, and Ambiga Dhiraj, "Big Data, Big Analytics: Eme	rging				
Business	Intelligence and Analytic Trends for Today's Businesses", Wiley, 2013. 2. Big-I	Data Black				
	Γ Editorial Services, Wily India					
2. Tom Wł	nite, "Hadoop: The Definitive Guide", Third Edition, O' Reilley, 2012. 5.	Eric Sammer,				
"Hadoop	Operations", O' Reilley, 2012.					
Reference Books	8					
	ak R, Licht A, Mantha V, Nagode L" Big Data and The Internet of Things Enter	prise				
Informat	ion Architecture for A New Age", A press, 2015.					
2 Dr. John	Bates, "Thingalytics - Smart Big Data Analytics for the Internet of Things", John	- Datas 2015				
NPTEL Links	Bates, Thingarytics - Smart Big Data Anarytics for the internet of Things, John	1 Dates, 2013.				
Unit 1	https://www.woutube.com/live/s2D0gNafngo?footurg_shore					
	https://www.youtube.com/live/e3D0gNqfnzo?feature=share					
	Unit 2 https://youtu.be/CDgtvl4c9Pg					
Unit 3						
Unit 4	Unit 4 https://www.youtube.com/watch?v=mNP44rZYiAU					
Unit 5	https://youtu.be/K-FhMegdlJo					

	B.TECH FOURTH YEAR	1	
Course Code	AEC0712	L T P	Credits
Course Title	Industrial Automation and Programming	300	3
Course object	ive: Student will learn about		
1	The basic concepts of automation.		
2	Different types of circuits & cylinders in pneumatics.		
3	The basic concepts of Electro pneumatics.		
4	Different types of circuits in Electro pneumatics.		
5	Discrete control using PLC and ladder programming.		
Pre-requisites			
	s & Basics of mechanical system		
	Course Contents / Syllabus		
UNIT-I	Introduction to Automation		8 hours
Review and De	finitions: Robots & its Kinds, Definition of Levels, Manipula	ators. Structure	
	ms, Non-industrial Representatives of the Robot Family, Rel		
	gence" and the Product	unononp our	
	Layouts: Processing Layout, Concept of an Automa	tic Manufactu	ring Process
	a Manufacturing Process, The Kinematic Layout, Rapid Proto		8
UNIT-II	Pneumatics Automation		8 hours
	vices: Different types of valves, Actuators and auxiliary	elements in P	
	r applications and use of their ISO symbols Synthesis and		
cylinders).	applications and use of their 150 symposis symposis and	design of ene	uits (up to
• /	Material starage, Handling and transport systems and i	ta automation	ing AS/DS
AGVS and conv	• Material storage: Handling and transport systems and i	is automation	using AS/K
	Electro Pneumatics Automation		01
UNIT-III			8 hours
	Electro Pneumatics, Classification Of Electro-Pneumatic	· · ·	
	nology, Electrical Symbols, Solenoid Valves, Switches, Se	nsors and Rela	iys, Electro
	uits, Rules for creating Relay logic diagram		
UNIT-IV	Electro Pneumatics		8 hours
Timer, Counter	r, Design of Electro-Pneumatic Circuits using single sol	enoid and dou	ble solenoi
valves with and	d without grouping.		
Industrial c	ontrol systems: Process industries versus discrete	manufacturing	g industries
Continuous ve	erses discrete control, Computer process control, For	rms of comp	uter proces
control.		1	1
UNIT-V	PLC		8 hours
	efinition, Advantages of PLC, Structures of PLC, Modes of C	neration Reso	
	ning Languages, Communication: Need for Communic		Transmissio
	Types of Commissioning, Ladder digs, Ladder Logic, Prog		
	atching, Timers, Counter, Practical Examples of Ladder Progr		interent type
or logic gates, L	atoming, Timers, Counter, Fractical Examples of Lauder Progr	anning	
Course Outco	mes: After completion of this course students will be	able to	
CO 1	Apply the knowledge of basic concepts of industrial automa	tion and	K ₁ , K ₃
	explore the direction of flow in components.		
CO 2	Design different types of circuits with pneumatics elements.		K4
CO 3	Analyze the use of different types of circuits with the help o pneumatics elements.	1 Electro	K4
CO 4	Analyze the Industrial control systems using electro-pneum	atics	K ₄
	technique		1 1 1

technique.

CO 5	Implement Discrete control using PLC and ladder programming.	K4			
Text books	Text books				
1. "Autom	ation, Production Systems and Computer Integrated Manufacturi	ng"- M.P.			
Grover,	Grover, Pearson Education.				
Reference Book	Reference Books				
1. "Computer Based Industrial Control" – Krishna Kant, EEE-PHI					
2. Princip	2. Principles and Applications of PLC – Webb John, Mcmillan 1992				
3. "An In	3. "An Introduction to Automated Process Planning Systems" - Tiess Chiu Chang &				
Richard A. Wysk.					
4. "Anator	4. "Anatomy of Automation" – Amber G.H & P.S. Amber, PrenticeHall.				
NPTEL Links					
Unit 1	https://www.youtube.com/watch?v=br-ezdmEq7A				
Unit 2	Unit 2 https://www.youtube.com/watch?v=se9XxkpXP74				
Unit 3	https://www.youtube.com/watch?v=jKb-KLVzCtw				
Unit 4	https://slideplayer.com/slide/3374651/				
Unit 5	https://slideplayer.com/slide/3374651/				

B.TECH FOURTH YEAR			
Course Code	AEC0713	L T P	Credits
Course Title	Data Analytics	300	3
Course Objective:	In this course, the student will learn abo	out	
1	Various basic concepts & fundamentals	of Data analytics	
2	Various types of data formats and their n	nanipulations.	
3	Exploratory data analysis and visualizati	ion techniques	
4	R/Python/Tableau programming language	ge.	
Pre-requisites: Bas	ic Knowledge of Statistics and Probability		
•	Course Contents / Syllabus		Hours
UNIT-I	Introduction To Data Science		8
	a Science, Evolution of Data Science, Dat	tafication. Skillsets ne	eded. Data Science
	[°] Data Analysis, Data Science Tools and	-	-
	ics Vs Reporting, Data classification, Futu		
	ields, Use cases of Data science-Facebook		
		, 1 (etilix, 7 illiazoli, 00	
UNIT-II	Data Handling & Statistical Analysis		8
	uctured, semi-structured, unstructured data	Numeric Categoric	
	ansactional Data, Spatial Data, Social Network		
	ta manipulation in various formats, for exa		
	f central tendency (Mean, Median, Mode), Cen		
	on, Histogram Analysis, Normal distribution, S		
Covariance, Correlatio	on, Histogram Analysis, Normai distribution, s		wrargin or Error
UNIT-III	Data Pre-processing & Data Analysis		8
	cessing, data Attribute and its types, understa	inding and extracting us	
	g: Missing Values, Noisy Data, Discretization		
	n), Inconsistent Data, Data Integration and T		
	ompression, Numerosity Reduction, R-Square,		
	isualization and various graphical ways of data		sinneance of p value,
	isualization and various graphical ways of dat	representation.	
UNIT-IV	Exploratory Data Analysis		8
e e	ata, Removing Redundant variables, variable		
Outliers, Time series	Analysis, Data transformation and dimension	nality reduction technique	ues such as Principal
	(PCA), Factor Analysis (FA) and Linear Di		
Multivariate Explorate	ory Data Analysis. Data Munging, Data Wrang	gling- APIs and other to	ols for scrapping data
from the web/ internet	t using R/Python.		
UNIT-V	Data Visualization		8
	erview, Debug and troubleshoot installation	and configuration of th	
	on: Getting started with Tableau Software, Usi		
	ic charts (line, bar charts, Tree maps), Using th	e	incetting your Data to
	Overview of SUM, AVR, and Aggregate Feat		alculations and fields
	alculations to your visualization. Manipulating		
	tructuring your data, Sorting, and	s Data III Tableau. Clea	mig-up the data with
	a, Pivoting Tableau data. Advanced Visualiza	ation Tools. Using Filt	ers Using the Detail
	panels, customizing filters, Using and Cust		
			ung your data with
colors, Creating Dash	boards & Stories, Distributing & Publishing Y	our visualization	
Course Outcomes: After completion of this course, the students will be able to			
	I		

CO1	Understand the fundamental concepts of data analytics in the areas that plays major role within the realm of data science.	K1
CO2	Explain and exemplify the most common forms of data and its representations.	K2
CO3	Apply data pre-processing techniques on heterogenous datasets.	K3
CO4	Analyze data using exploratory data analysis.	K4
CO5	Apply visualization tool to analyze and draw inference from different types of data sets w.r.t different application scenarios.	К3
Textbooks:	· · · ·	
1. Glenn J. N	Myatt, Making sense of Data: A practical Guide to Exploratory Data	Analysis and Data

- Mining, John Wiley Publishers, 2007.
- 2. Data Analysis and Data Mining, 2nd Edition, John Wiley & Sons Publication, 2014.

Reference Books:

- 1. Data Mining Concepts and Techniques, Third Edition, Jiawei Han, Micheline Kamber, Jian Pei, Morgan Kaufmann, 2012.
- 2. The Data Science Handbook, Field Cady, John Wiley & Sons, Inc, 2017

NPTEL/ Youtube/ Faculty Video Link:

Unit 1	https://www.youtube.com/watch?
	v=3Bh_viwz6_0&ab_channel=NPTELIITGuwahati
Unit 2	https://www.youtube.com/watch?v=eo2tOPV3AoE&ab_channel=nptelhrd
Unit 3	https://www.youtube.com/watch?
	v=WwMz2fJwUCg&ab_channel=MITOpenCourseWare
Unit 4	https://www.youtube.com/watch?
	v=ARU0BEVxasQ&ab_channel=ConstrainedandUnconstrainedOptimization
	https://www.youtube.com/watch?
	v=bZMRHWu7hvg&list=PLIgDtce9BR0dZv1aZwVTmuWXc_vJPbB3q&index=34
	&ab_channel=ConstrainedandUnconstrainedOptimization
Unit 5	https://www.youtube.com/watch?v=3-NiZPbkr7A&ab_channel=KimiaLab